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Technical Review of Documents Related to EPA’s  
Framework for Identifying and Evaluating Lead-Based 
Paint Hazards from Renovation, Repair, and Painting 

Activities in Public and Commercial Buildings 

At the request of the Commercial Properties Coalition, scientists within Exponent performed a 

technical review of the Framework for Identifying and Evaluating Lead-Based Paint Hazards 

From Renovation, Repair, and Painting Activities in Public and Commercial Buildings 

(Framework).  The Exponent team assembled for the review comprises individuals with 

specialized expertise in air modeling, Monte Carlo analyses, health effects of lead exposures, 

and industrial hygiene practices.   

The May 30, 2014 Federal Register contained an advance notice of proposed rulemaking (2014 

ANPR [U.S. EPA 2014]) and requested comments on the Framework.  The Framework contains 

some discussion of the general procedures proposed for use in evaluating potential hazards 

associated with renovation, repair, and painting (RRP) activities in public and commercial 

buildings.  These procedures include air dispersion modeling to estimate impacts of RRP 

activities downwind of renovated buildings, Monte Carlo procedures to characterize exposure 

and risk, health effects/risks at low levels of lead exposure, and risk modeling procedures.  Each 

of these topics was reviewed by one or more members of the Exponent team.  Our review of 

these procedures is provided below.  Most of the comments provided below are based on review 

of the Framework initially released in May 2014.   However, more recently, additional technical 

reports that provide details of EPA’s proposed approach have become available.  For two of 

these, additional focused comments are provided.  Specifically, these more recent documents 

include EPA’s June 2014 document, Developing a Concentration-Response Function for Pb 

Exposure and Cardiovascular Disease-Related Mortality (Abt Associates, June 2014) and 

information contained in Appendices to the Approach for Estimating Exposures and Incremental 

Health Effects from Lead due to Renovation, Repair, and Painting Activities in Public and 

Commercial Buildings.    

We begin with a more general comment related to the need for a technical Framework to deal 

with EPA’s concerns about lead exposures associated with renovation.  

The Need for a Framework is not Established 

The Framework is premised on the need for a relatively sophisticated analytical approach to 

assess exposures that may occur as a result of building RRP activities.  The Framework 

acknowledges that other aspects of lead exposures are already addressed, but that there is or 

may be a need to address the specific topic of lead exposure associated with public and 

commercial buildings.  However, EPA has not established the case for the evaluation of these 

buildings.  In fact, the Framework specifically states that exposures from the sources being 

considered are likely to be very small.  In light of the lack of data on hazards and on EPA’s 

preliminary judgment that risks are likely to be small, it would be prudent for EPA to employ 
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the commonly phased approach for assessing hazard and/or risk.  This would logically begin 

with evaluating or confirming whether renovation of buildings poses a substantive risk of 

contributing to lead exposures.  If confirmed, then subsequent exposure analyses might be 

employed, including, if appropriate, the detailed and complex analysis that is proposed in the 

Framework.  The process of determining whether there is a need for a special approach to the 

evaluation of commercial buildings should be based, in part, on a reliable technical assessment 

of potential risk and/or hazard.  This would be a Strategic Plausibility Analysis or Informed 

Bounding Evaluation that might provide EPA with insight into possible risks/hazards and 

indicate whether more sophisticated and complex probabilistic evaluations are even 

warranted.  This type of bounding analysis could entail commonly-used “backward” risk 

calculations to determine whether intermittent exposures could even get close to resulting in 

exposures of health concern.  EPA states in the Framework that they expect exposures to be 

very small, so it would make sense to confirm that before undertaking a large-scale evaluation.  

This assessment would still require that EPA identify blood lead levels against which 

incremental exposures could be judged.  At present, there are two conceptual views on this, and 

it would be worthwhile to consider both.   

As discussed above, we question whether a need exists for the highly detailed process proposed 

in the Framework, and we believe that simpler, more direct methods are available that would 

fulfill EPA’s obligation to address public and commercial buildings.  Nevertheless, it appears 

that EPA is constructing a complicated analytical approach.  We examined technical elements of 

this approach and point out substantial limitations that would affect the reliability and 

appropriateness of applying the Proposed Framework. 

Reliability of Framework in Light of Data Limitations 

Our principal concern with the use of the Framework is that it will generate unreliable results.  

The approach requires a substantial number of input parameters.  While data may be available 

for some variables, it is likely lacking for others.  There are, for example, significant data 

limitations with respect to source terms and parameters needed for air modeling. No amount of 

probabilistic analysis can overcome these data limitations. The results of analyses based on 

weak or assumed input data can be very misleading.  In the absence of data for input parameters, 

estimates would likely be used based on professional judgments or sparse information.  

Combining estimated parameters and weak data into a probabilistic approach can result in an 

enormous spread of results that would likely overestimate exposures.  This is because estimated 

input parameters would necessarily be conservative to ensure that the tails of the estimated 

distributions are not missed.  Using a probabilistic approach can be deceptive in such cases. The 

appearance is created that a reliable and useful analysis has been completed in which 

uncertainties and variability have been taken into account.  However, the lack of knowledge 

embedded in the uncertainties we identify in our comments will lead to an inflation (i.e., 

spreading) of the Monte Carlo output well beyond the bounds of reality.  
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Understanding Incremental Exposures and Baseline Conditions  

Background conditions and associated levels of lead in blood can vary considerably and can 

confound and confuse analyses and interpretations.  Blood lead levels in children reflect the 

aggregate of exposures.  However, where elevated baseline levels occur, there are usually one or 

a few predominant sources.  Current community health practices involve identifying and 

managing those sources.  To our knowledge, there is no evidence to suggest that RRP activities 

in public and commercial buildings are a significant source of lead to children, and EPA states 

its view that this potential source is likely a small contributor to exposure.  Further, there are 

geographic locations and/or urban conditions (e.g., areas with high natural background and older 

urban centers) where baseline blood lead levels are elevated relative to other areas.  Assuming 

that RRP activities are very small incremental sources, the relative contribution of RRP to 

blood lead levels in areas with more elevated blood lead levels is actually a smaller fraction of 

the total burden than for areas where baseline blood lead levels are already very low.  This 

underscores the importance of:  (1) understanding the predominant sources of lead in areas of 

concern; (2) employing an incremental and relative risk approach for judging specific sources, 

such as RRP activities for public and commercial buildings; and (3) directing lead management 

programs in areas where they are needed and to sources that are predominant contributors to 

exposure.  

Estimating lead dust loading from RRP work tasks in public and commercial buildings requires 

information from real-world studies of these tasks.  While we are aware of studies of worker 

exposure in designated work spaces, we are unaware of any comprehensive study of dust 

loadings from work spaces to building areas outside these work areas.  

Limitations of blood lead levels for assessing lead exposure 
associated with disease in older adults 

EPA appears to be selecting a dose-response approach that has substantial uncertainty and will 

almost certainly overestimate risks associated with exposures in children.  In EPA’s June 2014 

document, Developing a Concentration-Response Function for Pb Exposure and 

Cardiovascular Disease-Related Mortality (Abt Associates, Inc. 2014), the authors choose 

blood lead as the metric for lead exposure and consider four epidemiologic studies (Menke et al. 

2006; Schober et al. 2006; Khalil et al. 2009; Weisskopf et al. 2009) in which a single blood 

lead measurement was taken for each subject.  However, the measured blood lead in adults is 

not only a function of recent exposures but also reflects past exposures.  Bone lead stores 

associated with past exposures may reenter the bloodstream with bone remodeling (which is a 

constant process, but is more active early in life and perhaps later in life with osteoporosis).  The 

potential for misalignment of current blood lead levels with current versus past exposures is 

further exacerbated by the fact that today’s adults experienced lead exposures that were 

substantially higher before the early 1980s. As children, many of these adults experienced 

elevated lead associated with lead in gasoline, paint, food cans, and other products.  Past lead 

exposures may also be high in those who grew up in older housing with eroding lead paint.  

Therefore, adults with blood lead levels measured later in life that show higher levels than their 
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peers may have had very high past exposures in early childhood, or moderately elevated lead 

exposure in adulthood (e.g., from occupational exposure), or both.  In general, however, with 

attenuation from storage in bone and excretion over time, blood lead levels measured in older 

adults will be lower than earlier in life, and do not reflect current exposure levels that might 

result in the effects of concern.  

Thus, it is unclear whether associations observed with adult blood lead levels are due to 

maximum lifetime exposures (or at a sensitive life stage), recent exposure, or cumulative 

lifetime exposure (assuming that associations are not explained by bias or confounding).  For 

chronic diseases such as cardiovascular disease (CVD), many causal exposures are thought to 

exert their effect over a period of years, rather than acting instantaneously.  If this is the case for 

lead and CVD mortality, then blood lead may not indicate the etiologically relevant exposure.  

However, our understanding of the mechanism by which lead may cause CVD at low levels is 

incomplete, as acknowledged in the above studies. 

Moreover, to the extent that current blood lead levels in adults reflect the release of bone lead 

accumulated from exposure to much higher levels of lead in the past, as well as recent external 

exposure, the relative risk of CVD mortality per unit of recent lead exposure is overestimated.  

Thus, if the relative risk of CVD mortality per 1-µg/dL increase in blood lead is determined not 

only by recent lead exposure but also by past exposure to substantially higher lead levels, then 

the preventive impact of interventions to decrease current lead exposure will be exaggerated. 

Declining blood lead levels over time complicate exposure 
assessment 

Historically, the national geometric mean blood lead level in U.S. children aged 1–5 years 

during the first National Health and Nutrition Examination Survey (NHANES 1976–1980) was 

15 μg/dL, with about 90% of this population having blood lead levels of 10 μg/dL or higher.  

The average blood lead level of all ages in 1976 was approximately 16 μg/dL, which declined to 

about 9.5 μg/dL in 1980 (NCHS 1984).  Blood lead levels of children and all ages declined in 

subsequent surveys with the phasing out of lead in gasoline and other consumer products (Pirkle 

et al. 1994).  Nationwide blood lead data are not available prior to 1976, although Chisolm 

(1970) noted an upper limit for normal blood lead levels in urban areas of 40 μg/dL.   

 

The four epidemiologic studies considered for derivation of the concentration-response function 

between lead and CVD mortality are based on blood lead levels measured in 1988–1994 

(Menke et al. 2006; Schober et al. 2006), 1986–1988 (Khalil et al. 2009), and 1992–1999 

(Weisskopf et al. 2009).  Lead exposure and blood lead levels in the United States have 

decreased substantially over recent decades, including during the period since blood lead was 

measured in these studies.  In these studies, the blood lead levels among study participants were 

geometric mean = 2.58 µg/dL (Menke et al. 2006; assumed to be similar in Schober et al. 2006, 

which did not report the average blood lead level, but was based on an older subgroup [ages 

≥ 40 years instead of ≥ 20 years] of the same study population as Menke et al. 2006), mean = 

5.3 ± 2.3 µg/dL (Khalil et al. 2009), and geometric mean = 4.8 µg/dL (interquartile range, 3–7) 

(Weisskopf et al. 2009).   
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By contrast, as of 2009–2010, the geometric mean blood lead level in U.S. adults was 

1.23 µg/dL (95% confidence interval = 1.19–1.28) (CDC 2013).  This level is near the lower 

limit of detection of 1 µg/dL reported by the epidemiologic studies (Menke et al. 2006; Schober 

et al. 2006; Khalil et al. 2009), meaning that these studies were unable to characterize exposure 

variability for subjects with blood lead levels close to the average of today’s U.S. national 

population.  Therefore, in the absence of robust data on the shape of the concentration-response 

function at blood lead levels near 1 µg/dL, results from these studies cannot reliably be assumed 

to be relevant to current average blood lead levels in U.S. adults.  Instead, almost nothing is 

known about the relationship between blood lead levels and CVD mortality in this exposure 

range. 

Observed associations of lead exposure and CVD at high exposures 
should not be extrapolated to lower exposures 

In light of the paucity of data on blood lead levels below 1 µg/dL, which are most relevant to 

today’s U.S. population, the validity of extrapolating concentration-response functions down to 

lower levels in this range is tenuous.  Especially given the evidence of non-linearity in the 

concentration-response function for blood lead in relation to CVD and all-cause mortality 

outcomes (i.e., inverse associations in Menke et al. 2006 and null to inverse associations in 

Schober et al. 2006 at low blood lead levels), it is inappropriate to assume that relationships 

observed at higher blood lead levels can be extrapolated to lower levels. 

Of note, when blood lead levels were analyzed categorically, statistically significant 

associations with CVD mortality were observed only with the highest exposure category in each 

study:  ≥3.63 µg/dL in Menke et al. (2006), ≥10 µg/dL in Schober et al. (2006), and ≥8 µg/dL in 

Khalil et al. (2009).  Weisskopf et al. (2009) did not observe a statistically significant 

association between the highest tertile (>6 µg/dL) of blood lead and CVD mortality.  Given the 

open-ended nature of the highest exposure categories, these associations could have been driven 

largely by blood lead levels well above those typically observed in the United States today.  

Those with higher blood lead levels in these studies would likely have had even higher past lead 

exposure and blood lead levels.  This observation again calls into question the validity of 

applying the results of these studies to current blood lead levels.   

Abt Associates, Inc. (2014) inappropriately discounted the 
conclusions by NTP regarding limited evidence of an association 
with cardiovascular disease mortality at low exposure levels 

U.S. EPA concluded in its 2013 Integrated Science Assessment for lead that there is a “causal” 

relationship with CVD mortality, without specifying whether this relationship exists at low 

levels of lead exposure.  By contrast, the National Toxicology Program (NTP) concluded in its 

2012 monograph focused on low-level (<10 µg/dL) lead—which is the exposure level of 

interest for the EPA in the current Framework document—that there was “limited” evidence of 

an association with CVD mortality.  In particular, Abt Associates, Inc. (2014) quotes NTP as 
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stating that the “association between increased CVD mortality and increased blood Pb was 

supported by three prospective studies but not supported by two prospective studies, one of 

which reported a significant association with bone Pb.”  Bone lead is more representative of 

cumulative life-long lead exposure than blood lead, although it also has limitations for assessing 

the magnitude, timing, and frequency of the exposure. 

On pp.2-5 to 2-6, Abt Associates, Inc. (2014) largely discount the NTP conclusions by noting 

that one of the two negative studies (Møller and Kristensen 1992) combined fatal and non-fatal 

CVD cases, and that the other negative study (Weisskopf et al. 2009) “suffers from selection 

bias” because the study cohort “is weighted toward individuals without CVD, given that in order 

to be entered into the cohort you could not have prior CVD.  For older individuals this creates a 

strong selection bias toward heart-healthy people.”  In fact, selecting cohort members based on 

the absence of a history of CVD does not create selection bias, which occurs when study 

participation is associated with both the outcome and the exposure.  In the Weisskopf et al. 

(2009) study, eligibility was dependent on relatively low risk of the outcome (CVD), but 

independent of the exposure (blood and bone lead concentration), and therefore would not have 

resulted in a distortion of estimated relative risks.   

Rather, the apparent selection bias described by Weisskopf (2013) seems to have been due to 

socioeconomic status, which can influence lead exposure, future CVD risk, and the decision to 

participate in a cohort study (including study entry and follow-up).  This type of selection bias 

can affect any cohort study, not only that conducted by Weisskopf et al. (2009), as discussed 

further below. 

The inclusion of both fatal and non-fatal CVD cases in the study by Møller and Kristensen 

(1992) should not have diminished the association with blood lead levels if lead causes the 

development of CVD, rather than increasing CVD severity (such that it would be associated 

with fatal but not non-fatal disease).  Given that EPA (2013) concluded that a causal association 

exists between lead and blood pressure increases and hypertension, and NTP (2012) concluded 

that there is sufficient evidence that low-level blood lead is associated with these outcomes, this 

scenario seems implausible.  Thus, the null association between blood lead level and fatal and 

non-fatal CVD reported by Møller and Kristensen (1992) should not have been dismissed as 

irrelevant to the association with CVD mortality. 

In summary, Abt Associates, Inc. (2014) inappropriately discounted NTP’s conclusion about the 

“limited” evidence of an association between low-level blood lead and CVD mortality (NTP 

2012), and should have given greater credence to the two studies with null results before 

proceeding to estimation of a concentration-response function for an association that may not be 

causal.  Of note, two of the three prospective studies with positive results (Menke et al. 2006; 

Schober et al. 2006) were based on the same study population.  Thus, among the studies cited by 

NTP (2012), only two independent prospective studies found a positive association between 

blood lead and CVD mortality (primarily at higher lead exposure levels), whereas two found no 

significant association. Further, Hara et al. (in press) conclude that small and inconsistent effect 

sizes in the associations of blood pressure with blood lead likely exclude current environmental 

lead exposure as a major hypertension cause in the United States.   

Assessing causation for CVD is especially complicated and there exist predominant causal 

factors that should not be ignored when assessing causation for any one possible factor, namely 
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exposure to lead.  The flow chart below represents a conceptual model the potential cumulative 

risk of a multitude of factors with regard to CVD as a health endpoint (Menzie and Kashuba, 

2013).  This conceptual model was prepared as part of the Agency’s effort to develop guidance 

on consideration of cumulative risks.  However, the model also displays the myriad factors that 

need to be taken into account when assessing causation.  It should be evident from this figure 

that correlations that may be present in data sets may not reflect causal relationships.  We 

consider the significance of some of these factors later in our comments.  
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Use of only a single analysis from Menke et al. (2006) to develop the 
concentration-response function should be expanded to consider the 
full evidence from this study and others 

The concentration-response function for blood lead and CVD mortality by Abt Associates, Inc. 

(2014) is ultimately based on the results of only one study (Menke et al. 2006).  The selection of 

this study is reasonably well justified based on the following considerations:  (1) Menke et al. 

(2006), but not the other three studies considered (Schober et al. 2006; Khalil et al. 2009; 

Weisskopf et al. 2009), reported results using a continuous concentration-response function; 

(2) Menke et al. (2006) was based on a nationally representative adult population, whereas 

Khalil et al. (2009) and Weisskopf et al. (2009) were not; and (3) Menke et al. (2006) had the 

largest study population.  Also, Menke et al. (2006) considered both confounding and effect 

modification by hypertension and estimated kidney function, among other factors, whereas the 

other studies did not (although Khalil et al. [2009] adjusted for confounding by hypertension 

and numerous other factors).  Finally, in a personal communication, Dr. Weisskopf “revealed 

that there were errors in the analysis” (Abt Associates, Inc. 2014, p.2-6) and recommended 

against using the results of Weisskopf et al. (2009) before corrected results were available, 

thereby ruling out this study. 

Although Menke et al. (2006) appears to be the most appropriate study of the four considered 

for development of the concentration-response function, several issues nevertheless diminish its 

utility for this purpose.  For instance, results of a quadratic spline model were presented 

graphically for all-cause mortality, myocardial infarction mortality, stroke mortality, and cancer 

mortality (Figure 1 of Menke et al. 2006), but not for overall CVD mortality.  Evidence of an 

inflection point in the models for both all-cause and myocardial infarction mortality at 

approximately 2 µg/dL blood lead, with negative slopes between 0 and 2 µg/dL (as well as 

above approximately 7 µg/dL) suggests that a similar inflection point might be detected also for 

CVD mortality, indicating important non-linearity in the concentration-response function.  

However, because quadratic spline results were not presented by Menke et al. (2006) for CVD 

mortality, whether a similar non-linear dose-response trend exists for this endpoint is unclear.  

Instead, only the hazard ratio (HR) for CVD mortality based on the possibly incorrect 

assumption of a (log-log) linear concentration-response function was used by Abt Associates, 

Inc. (2014). 

Two other issues not fully addressed by Menke et al. (2006) are modification of the 

concentration-response function by age and time period.  Schober et al. (2006) analyzed the 

same data set from the National Health and Nutrition Examination Survey (NHANES III) 

limited to adults aged ≥ 40 years (presumably because CVD mortality among adults under age 

40 years may be etiologically different from that in older adults).  Instead of setting time since 

the NHANES III examination as the time scale for the Cox proportional hazards regression 

model—the approach used by Menke et al. (2006)—Schober et al. (2006) used age as the time 

scale and stratified the baseline hazard by birth cohort and survey phase, to allow for the decline 

in cumulative lead exposure over time.  Schober et al. (2006) reported that “[f]or each category 

of deaths, statistical testing did not support the null hypothesis that proportional hazards were 

constant by age” (pp. 1539–40)—that is, the association varied significantly by age—and the 

authors therefore reported results stratified by age group.  The hazard ratio for CVD mortality 
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was not statistically significant in any age group, but was stronger for ages 75–84 years than for 

40–74 or >85 years.  By contrast, Menke et al. (2006) found no statistically significant subgroup 

heterogeneity in the hazard ratio for CVD mortality, although the results suggested that the 

association was stronger for <60 than ≥60 years.  Thus, whether the association between blood 

lead level and CVD mortality varies by age group in the NHANES III data set is unresolved.  If 

the relationship is indeed modified by age, then the concentration-response function may not be 

generalizable to all age groups. 

Menke et al. (2006) did not stratify results by birth cohort or survey phase, nor did they allow 

for different baseline hazards by these factors, as did Schober et al. (2006).  Menke et al. stated 

that they evaluated the proportionality assumption of the Cox model using Schoenfeld residuals, 

but they did not report whether they detected any violation of this assumption—that is, whether 

the hazard ratio varied over calendar time (the time scale that they used).  Therefore, it is 

unclear whether the association between blood lead level and CVD mortality varied over 

calendar period or birth cohort.  If such variation was observed, it would also limit the 

generalizability of the concentration-response function (as well as the validity of the Cox model 

results). 

Abt Associates, Inc. (2014) did not attempt to validate their concentration-response function 

against the results of the other three studies.  If the results of Menke et al. (2006) are valid in 

terms of showing little subgroup heterogeneity of the hazard ratio between blood lead and CVD 

mortality, then the results should apply to other populations, including older women (Khalil et al 

2009), male veterans (Weisskopf et al. 2009), and an older subset of the same study population 

(Schober et al. 2006).  Validation in other study populations is thus seemingly reasonable.  (If, 

on the contrary, the association does vary by age and sex, then the function is not as broadly 

generalizable as suggested by the authors.) 

The authors of the document suggest that differences in health outcomes evaluated by the four 

studies hamper comparison of results (Abt Associates, Inc. 2014, p.3-15).  However, an 

evaluation of the International Classification of Disease (ICD) codes used in the four studies 

reveals that results should be comparable at least among Menke et al. (2006), Schober et al. 

(2006), and Weisskopf et al. (2009).  As their outcome measure, Menke et al. (2006) considered 

all diseases of the circulatory system except for transient cerebral ischemia (ICD 9
th

 Revision 

[ICD-9] codes 390–459, except 435, for deaths in 1988–1998 and ICD-10 codes I00–199 for 

deaths in 1999–2000).  This is essentially the same approach taken by Weisskopf et al. (2009), 

who considered ICD-9 codes 390–459, including 435; and Schober et al. (2006), who 

considered ICD-10 codes I00–I78, excluding I80–I99 (diseases of veins, lymphatic vessels, and 

lymph nodes, not elsewhere classified; and other and unspecified disorders of the circulatory 

system—i.e., diseases not likely to make a major contribution to CVD mortality).  Khalil et al. 

(2009) selected ICD-9 codes 401–404 (primary hypertensive disease), 410–414 (ischemic heart 

disease), 425 (cardiomyopathy), 428 (heart failure), 429.2 (unspecified cardiovascular disease), 

430–438 (cerebrovascular disease), and 440–444 (atherosclerosis, aortic aneurysm and 

dissection, other aneurysm, other peripheral vascular disease, and arterial embolism and 

thrombosis), as well as 798 (sudden death, cause unknown).  The comparability of results for 

CVD mortality in this study to those from the other studies depends on the proportion of CVD 

deaths that are attributed to these codes—probably the majority, in which case, the results would 

be reasonably comparable. 
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Thus, it should have been feasible and appropriate to compare the derived concentration-

response function to the results of the other studies.  Consistency of results would lend credence 

to the validity and generalizability of the derived function, whereas inconsistency would suggest 

sources of error or heterogeneity that need to be considered before applying the function to the 

general population for a benefits analysis. 

Overall epidemiologic evidence is sparse 

Only four epidemiologic studies were considered in the development of the concentration-

response function between blood lead and CVD mortality (Menke et al. 2006; Schober et al. 

2006; Khalil et al. 2009; Weisskopf et al. 2009), and two of these were based on overlapping 

study populations (Menke et al. 2006; Schober et al. 2006), leaving only three independent 

studies of this association.  Especially in light of important methodological limitations of these 

studies, this is an insubstantial body of literature on which to base public health and policy 

decision making. 

All four studies relied on a single measure of blood lead level as the exposure metric.  

(Weisskopf et al. [2009] also used bone lead measurements taken at two anatomic sites—the 

tibia and the patella.)  The limitations of using a single blood lead sample to assess lead 

exposure were discussed earlier. 

All four studies used death certificates to determine cause of death, although Khalil et al. (2009) 

supplemented this information with hospital discharge summaries for 33% of deceased 

participants (n = 41 deaths from all causes).  Misclassification (especially poor sensitivity) of 

CVD mortality based on death certificates is well known (e.g., Herrett et al. 2013; Wexelman et 

al. 2013; Harriss et al. 2011).  Such misclassification could have been either non-differential or 

differential by lead exposure status, leading to unpredictable bias in the observed associations. 

Confounding is a key concern in studies of the potential adverse health effects of lead exposure.  

Socioeconomic and many other environmental and behavioral factors are associated with lead 

exposure, and many of these factors are also associated with a variety of health outcomes, 

including CVD, raising the possibility of confounding.  Although all four studies attempted to 

adjust for potential confounding by socioeconomic, demographic, and other factors—with more 

covariates included in the multivariate models used by Menke et al. (2006) and Khalil et al. 

(2009)—residual confounding cannot be excluded, whether due to failure to control for 

unmeasured factors or inadequate control for measured factors.  Adjustment for confounding is 

particularly difficult for adults, because many earlier-life covariates that may be important for 

lead exposure and CVD risk are unknown. 

For example, Menke et al. (2006) controlled for cigarette smoking as current, former, or never; 

alcohol consumption as yes vs. no; education as high school or below; physical exercise as 

≥3 times per week or less; and household income as ≥$20,000 per year or below.  Blood lead 

levels were statistically significantly higher among current smokers, alcohol consumers, those 

without a high school education, those without regular physical exercise, and those with a lower 

income—all of which are risk factors for CVD mortality.  Therefore, the observed associations 

with elevated blood lead levels, with hazard ratios generally below 2.0, could readily be 
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explained by residual confounding.  (Adjusted relative risks between these factors and blood 

lead levels were not reported by Menke et al. [2006], but they are typically stronger than 2.0 and 

could, therefore, be responsible for the observed hazard ratios.)  

As noted by Weisskopf (2013), selection bias based on socioeconomic status is also a concern, 

even in prospective cohort studies: “Because socioeconomic status (SES) is often a strong 

predictor of cohort study participation, and many environmental toxicants have strong 

associations with SES, studies of health effects of environmental toxicants may be particularly 

susceptible to this bias.”  That is, if study enrollment and/or completion of study follow-up are 

related to both lead exposure and risk of future CVD mortality, as might occur if participation is 

associated with socioeconomic status, then estimated associations will be biased.  In the cohort 

studied by Weisskopf (2013), non-participation resulted in bias of the association between bone 

lead levels and ischemic heart disease mortality toward the null.  However, bias away from the 

null may occur in other settings.  None of the four cohort studies under consideration is immune 

from this potential bias.  

Other issues related to the Abt Associates, Inc., report 

Other issues that are important for U.S. EPA to address before moving forward are identified 

below. 

 The Abt Associates, Inc., document summarizes the NTP (2012) and EPA (2013) 

conclusions about other CVD morbidity endpoints, such as blood pressure, 

hypertension, coronary heart disease, peripheral artery disease, and cerebrovascular 

disease, but a concentration-response function is developed based only on CVD 

mortality.  The decision not to use CVD morbidity endpoints was not thoroughly 

discussed and justified, but should have been considered, perhaps even for the purpose 

of sensitivity analysis.  In addition, the decision not to consider other organ systems 

(e.g., neurological, renal, reproductive/developmental) as endpoints for development of 

the concentration-response was not thoroughly discussed and justified. 

 

 The document briefly summarizes potential modes of action for lead and CVD, based 

on discussion in the U.S. EPA Integrated Science Assessment for lead.  The summary 

implies a degree of certainty about the effects of lead on reactive oxygen species, 

nitrogen dioxide, inflammation, calcium ions, etc., and the downstream impact on CVD.  

However, the strength of this experimental evidence and its relevance to clinical CVD 

development and progression should be discussed more fully.  

 

 High lead exposure is toxic to the kidneys, and kidney damage can result in 

hypertension, which is a risk factor for CVD.  Less clear is whether moderate to lower 

lead exposure causes such effects.  Because lead excretion is mainly through the 

kidneys, those with kidney disease and a reduced glomerular filtration rate (and 

hypertension) may have a higher blood lead level due to a reverse-causation 

phenomenon.  Such a possibility has not been considered thoroughly by the authors of 

this document or the authors of the underlying studies. 
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Dispersion Modeling Procedures  

Although the Framework mentions that the EPA AERMOD model will likely be used to model 

the dispersion of lead-containing dust from renovated buildings as part of the exterior analysis, 

and mentions some of the parameters that will be incorporated in associated Monte Carlo 

analyses, the notice and the Framework both acknowledge that the Framework “does not 

provide significant detail regarding modeling inputs and results” and that “further details … 

would be provided for review and comment in any future proposal.”  Consequently, it is not 

possible at this time to provide detailed comments on the proposed modeling approach, because 

it is not yet well defined.  Indeed, it is not even clear whether EPA has a good idea of how it 

intends to model the downwind transport of dust emissions that would be generated by RRP 

activities. 

One of EPA’s specific criteria for the models to be used is to be consistent with the analysis 

used for the 2008 RRP rule.  However, neither the April 22, 2008, final rulemaking notice nor 

the January 10, 2006, proposed rulemaking notice for the RRP rule provide any information 

regarding any air dispersion modeling that may have been conducted to support development of 

that rule.  Indeed, there is no mention of air dispersion modeling in these prior notices, and there 

is no sign that any was conducted.  However, in an earlier ANPR published on May 6, 2010 

(2010 ANPR), EPA requested public comment on several issues that may provide some insight 

into EPA’s thinking regarding the dispersion modeling. 

Given the lack of detail regarding dispersion modeling inputs and procedures in the Framework, 

our comments focus on the suitability of the general approach, the appropriateness of the model 

proposed for use (AERMOD), and issues that should be taken into account in any modeling 

analysis that might be used to support rule development. 

The use of a dispersion model, like AERMOD, to describe the downwind transport of dust 

emissions from a source is well established for various regulatory purposes.  However, if 

AERMOD is used to predict dust concentrations and/or deposition downwind of RRP activities, 

and if the results are to be used in an absolute (rather than relative) sense (which appears to be 

the case here), then the results will be no better than the accuracy with which the modeled 

emission rates can be specified.  Therefore, how EPA intends to estimate dust emission rates is a 

critical consideration.   

Emissions to the outdoor environment due to dust generated by indoor RRP activities will likely 

be small, particularly if containment measures are used in accordance with standard workplace 

practices.  Emissions to the outside environment from dust generated by exterior RRP activities 

would likely be larger.  The 2010 ANPR references a 2007 report (“Characterization of Dust 

Lead Levels After Renovation, Repair, and Painting Activities”) that includes information on 

the amount of lead collected per square foot for various types of interior and exterior RRP jobs.  

EPA could consider using these data to estimate dust generation rates if the underlying data are 

suitable and reasonably representative of the activities to be analyzed.  It’s unclear whether this 

is EPA’s intention. 

Another possible approach would be to use some sort of mass-balance approach, as implied by 

Figure 3 and Appendix B of the Framework, based on the listing of factors such as the fraction 

of paint emitted in bulk and aerosol form and the containment efficiency.  However, the 
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Framework text mentions the use of a mass-balance approach with respect to the interior, not 

the exterior, analysis. 

Another possible approach would be to use existing AP-42 factors for certain types of activities, 

such as abrasive blasting and some construction activities.  However, the associated emission 

factor ratings are likely not good enough (e.g., the abrasive blasting emission factor is “E” 

[poor]) to provide meaningful emissions estimates.   

The important factor is whether emission rates associated with interior and exterior RRP 

activities can be estimated accurately enough to provide a means of obtaining meaningful 

predicted downwind impacts for use in other portions of the analysis.  Without this, estimates of 

exposure and impacts on blood lead become highly uncertain. 

Other concerns relate to source characterization.  In the 2010 ANPR, EPA asked whether dust 

drifting from exterior renovations would resemble smelter plumes.  Because of differences in 

the sources, we know that this would not be the case.  Plumes from smelters are hot and buoyant 

and typically emitted from high stacks or from roof monitors.  Smelter emissions would be 

modeled either as point sources (for stacks) or as buoyant line sources (for roof monitors).  In 

contrast, emissions of dust from renovations, particularly from exterior work, would be expected 

to be largely non-buoyant and would not likely be released from an identifiable chimney, stack, 

or vent.  The emissions would be fugitive in nature and would be best characterized as a volume 

source, not as a point source. 

In the Framework, EPA specifically mentions the ability of AERMOD to incorporate 

consideration of “obstruction adjustment.”  We assume that EPA is referring to the building 

downwash algorithms within AERMOD.  However, these algorithms are invoked only for point 

sources, not for volume sources.  Therefore, one of the attributes that EPA cites for selecting 

AERMOD may not be compatible with or relevant to the likely nature of the sources that would 

be modeled.  The only adjustment that might be applied to volume sources is characterizing the 

initial horizontal and vertical plume dispersion or size as a function of building size.  Although 

this will account to some extent for enhanced initial dilution due to the source building, it will 

not account for any subsequent dilution associated with downwind structures.  If the downwind 

target structures where impacts are to be estimated are tall or in clusters, AERMOD will treat 

the plume as if it moves through (rather than around) those structures, and the associated plume 

dilution will be underestimated.  This could lead to an overestimation of downwind 

concentrations. 

Another potential issue relates to the treatment of wet and/or dry deposition in the exterior 

analysis.  It’s not clear whether EPA intends to use AERMOD to explicitly predict deposition of 

dust generated by RRP activities, or if the consideration of deposition is limited to the use of the 

separate dust model cited for use in the interior analysis.  It would seem that estimates of 

deposition would be relevant to tracking in dust from the outdoors downwind of public and 

commercial buildings and residences.  However, given the relatively short downwind region of 

impact that would be expected from most RRP activities, the amount of dust that would be 

deposited in the near-field area is likely to be small.  If AERMOD is used to estimate 

deposition, then additional parameters (such as the particle size distribution and/or a mean 

particle size) would be needed.  This sort of information may not be readily available. 
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RRP activities are often of fairly short duration and generally would be expected to occur during 

daylight hours.  If this is the case, then any modeling conducted by EPA to support rulemaking 

should account for the expected times of occurrence and duration of these activities.  If the RRP 

activities under consideration will not occur at night but are modeled as if they do, then the 

AERMOD results will likely significantly overestimate actual impacts.  Studies have shown, 

and EPA has acknowledged, that AERMOD, in its regulatory default mode, greatly 

overestimates actual impacts from low-level sources during light wind and stable hours (i.e., the 

conditions that tend to occur at night).  Therefore, it will be important to use model options in 

AERMOD that can account for variations in emissions with time of day and season, if 

applicable.  In addition, it would be advisable to use certain “beta” (non-default) options within 

AERMOD and the associated AERMET meteorological pre-processor to help reduce the degree 

of model over-prediction that has been observed during light-wind, stable hours.  Otherwise, 

impacts from RRP activities may be overestimated significantly, and the analyses may reach 

spurious conclusions regarding associated hazards.  

EPA does not indicate the averaging times of concern for potential health effects.  The National 

Ambient Air Quality Standard for lead has a rolling 3-month average basis.  Is this the 

averaging time associated with potential health effects from RRP activities?  Many RRP 

activities are of relatively short duration, so any modeling to determine impacts should account 

for the duration of the activities of interest, as well as the averaging time for any potential 

associated health effects. 

Like most atmospheric dispersion algorithms, AERMOD predicts only average (i.e., first-order 

expectations of) patterns, and does not accurately account for either short-term temporal 

fluctuations or short-term spatial heterogeneity (i.e., second-order expectations), of atmospheric 

dispersion.  Potential exposure mischaracterization of relatively large magnitude (e.g., ~10-fold 

[Bogen and Gouveia 2008]) within modeled atmospheric dispersion “footprints” have been 

shown to be associated with ignoring expected second-order atmospheric dispersion effects over 

periods of several hours.  To the extent that the durations of RRP activities are substantially 

shorter than 3 months, it is likely that AERMOD predictions may similarly mischaracterize 

impacts of deposition due to external RRP sources.  Dispersion modeling for the Framework 

should discuss this issue, and possibly address it using proposed, relatively simple post-

processing methods that can be applied to adjust the output of atmospheric dispersion models 

such as AERMOD that generate only first-order dispersion-modeling  predictions (Bogen and 

Gouveia 2008). 

The Framework mentions a variety of factors that may be incorporated in the Monte Carlo 

analyses.  These include climate region, rain frequency, and obstruction adjustment, as well as 

several “receptor building characteristics” that include distance of receptor from renovated 

building, receptor use type, area of building, receptor location (urban or rural), location of 

receptor relative to renovated building, and height of receptor building.  Issues associated with 

obstruction adjustment have already been discussed.  Issues associated with climate regime and 

rain frequency could be addressed by selecting a variety of meteorological data sets that would 

span a range of geographic locations and climate categories.  AERMOD can be run with urban 

or rural dispersion coefficients, to account, to some extent, for receptor location.  AERMOD can 

also account for local surface characteristics and effects on meteorology through the 

specification of representative values of albedo, surface roughness, and Bowen ratio. 
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Interior Modeling  

EPA has stated in the framework document that they will likely use a mechanistic mass-balance 

model, together with Monte Carlo analysis, to evaluate lead hazards from RRP activities in 

public and commercial buildings.  This model assumes that the indoor air is well mixed and 

contains no concentration gradients in the space.  

Mage and Ott (1996) have stated that there is no scientific basis to adjust modeling calculations 

with a simple mixing factor to account for rooms that are not well mixed.  Rooms undergoing 

renovation, repair, and painting (i.e., the source rooms) will have significant concentration 

gradients during the lead-dust-generating work tasks, and this will likely invalidate the 

assumption of a well-mixed room.  In addition, other work spaces in buildings will also have 

concentration gradients created by particle resuspension from foot-traffic areas and HVAC 

zones, and workstation design or layout.  While there are some modeling techniques that can be 

used to overcome this issue, they will significantly add to the complexity of the models and 

overall uncertainties of the results.  For example, use of multiple zones or compartments or use 

of computational fluid dynamics (CFD) modeling, as recommended by Mage and Ott, can be 

attempted.  However, the framework document does not discuss the use of multi-zone modeling 

or CFD modeling as a likely option. 

The model must provide an inventory of dust in the air and on the floor through time in order to 

arrive at lead dose.  The large size and time-dependent nature of concentration gradients found 

in commercial buildings negate the assumption of heterogeneous environments, which 

assumption is necessary to estimate exposure over time under the static conditions assumed by 

the model. 

Furthermore, the model as it stands now is very complex and requires estimates of central 

tendencies for some parameters, and distributions for others, that are the most sensitive to 

estimating exposure.  Notwithstanding the large number of parameters that exist in commercial 

buildings that affect particle transportation and deposition on a daily basis, estimating values for  

renovations will be extremely difficult, due to the paucity of empirical data that could be used to 

validate an estimated distribution(s).  Also, the model purposely ignores HVAC filtration, which 

is an important sink for particulates in commercial buildings.  

In summary, predicting particle behavior and deposition with mathematical modeling from 

interior sources, such as from RRP in public and commercial buildings, has not been fully 

developed to the point where one can reliably use models to estimate exposures for purposes of 

hazard or risk assessment, as proposed in the Framework. 

Monte Carlo Procedures to Characterize Exposure and Risk 

The proposed Framework indicates that “EPA would assess elevations in lead exposure 

resulting from a broad range of scenarios, considering variations in types of renovation 

activities, building types, sizes and configurations, use and occupancy patterns, cleaning 

frequencies, etc., which are designed to be reflective of actual P&CB settings … in both 
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children and adults,” and that because the scenarios are not equally likely, “EPA would provide 

a discussion of the relative frequency of these high incremental IQ changes,” and the “hazard 

finding would be made based on an overall judgment of the frequency and magnitude of 

incremental health effect changes resulting from P&CB renovations.”  Two types of RRP 

activities are considered:  interior and exterior.  Within each category, the Framework defines a 

set of scenario variables, together with alternative values for each such variable.  An external (or 

internal) scenario is defined by one among all possible combinations of values of the entire set 

of external- (or internal-) scenario variables.  Conditional on each scenario considered, the 

Framework also defines a set of constants and variables that will be used in Monte Carlo 

analysis of exposure and dose-response characteristics associated with that particular scenario.  

Specifically, in Appendix A of the Framework (U.S. EPA 2014b), Table A-3 (Exterior Analysis 

Monte Carlo Inputs) lists a total of 65 distributed variables for use in Monte Carlo analysis of 

exterior scenarios, 34 of which are modeled as continuous random variables, and the remainder 

as random samples from discrete distributions.  In Appendix B of the Framework (U.S. EPA 

2014b), Table B-3 (Interior Analysis Monte Carlo Inputs) lists a total of 12 distributed variables 

for use in Monte Carlo analysis of interior scenarios, seven of which are modeled as continuous 

random variables, and the remainder as random samples from discrete distributions.   

The Framework uses Monte Carlo analysis to estimate exposure and corresponding risk 

(i.e., “hazard”).  To perform this last step, the Framework explains: 

“To analyze potential hazards, EPA would examine the various distributions across 

percentiles in a single scenario (Figure 1A) and across different scenarios (Figure 1B). 

The collection of these distributions helps account for the total variability in exposure 

owing to environmental, lifestyle, and biokinetic differences across the population. EPA 

would place the less frequent, high incremental IQ changes within the context of 

expected (mean) incremental IQ changes. Because each scenario is not equally likely, 

EPA would provide a discussion of the relative frequency of these high incremental IQ 

changes. The hazard finding would be made based on an overall judgment of the 

frequency and magnitude of incremental health effect changes resulting from P&CB 

renovations. … To perform the Monte Carlo analysis, each scenario would be run 

20,000 times (where each run is referred to as an “iteration”).  Preliminary testing 

indicates that 20,000 iterations would be appropriate in order to optimize the 

combination of accuracy and run‐time efficiency.” 

The Framework thus makes clear that EPA intends to evaluate percentiles as well as the mean 

value of hazard estimated probabilistically using Monte Carlo methods. 

Although the Framework makes reference to a total of 20,000 Monte Carlo realizations of each 

scenario-specific set of Monte Carlo input variables, Issue 1 (“Monte Carlo and Sensitivity 

Analyses”) of the “Draft Peer Review Charge Questions” for the Framework (U.S. EPA 2014c) 

indicates that “All combinations of scenario variables have been modeled and a distribution of 

results for each scenario was developed by iterating 10,000 times for exterior scenarios and 

3,000 times for interior scenarios from the sampled variables.”  These simulation sample sizes 

(3,000 and 10,000) appear to contradict the simulation size of 20,000 indicated in the 

Framework (as quote above).  This contradiction needs to be resolved, and a consistent 

explanation needs to be provided concerning how Monte Carlo methods were or will be used to 

develop Framework-based exposure and risk estimates.  As explained below, regardless of 
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which simulation sizes within this range are used, the fact that these values are relatively small 

may undermine the reliability of Monte Carlo results obtained and used to develop the 

Framework. 

The probabilistic approach to hazard characterization summarized above raises the following 

questions, which should be resolved before the proposed Framework can be evaluated to assess 

its scientific merits and technical feasibility. 

1.  The first question concerns the issue of what is being represented by each of the input 

distributions to be used for probabilistic hazard analysis.  Several authors, including 

EPA and NRC, have previously recommended that distinguishing between uncertainty 

and variability is required for this type of probabilistic analysis (Bogen and Spear 1987; 

Bogen et al. 2009; NRC 1994; EPA 2011).  In light of this understanding of appropriate 

application of probabilistic methods, the Framework should specifically address how 

input variable distributions representing uncertainty would be distinguished 

systematically from those representing inter-individual variability.  If the Framework 

intends all input variables to represent inter-individual variability, this should be stated 

explicitly and justified with an explanation of why none of the variables are considered 

to involve uncertainty relevant to the analysis.  If not, how is joint uncertainty and 

variability to be evaluated in order to distinguish acceptable from unacceptable 

scenarios?  The proposed Framework should be modified to provide details concerning 

how it proposes to address this general issue. 

2.  With so many input variables, statistical test(s) should be applied to ensure that intended 

multidimensional statistical independence (i.e., lack of significant inter-correlations) is 

actually realized in each Monte Carlo calculation performed, if such statistical 

independence is intended.  Algorithms (e.g., Iman and Conover 1982) that typically are 

applied to induce a target correlation (including a target of zero-correlation) among 

multivariate random samples contain no built-in objective test to assess the magnitude of 

the extent to which a realized correlation matrix deviates from a user-specified target 

correlation matrix, or from a default identity (i.e., zero-correlation) matrix.  The more 

that such Monte Carlo calculations are performed, the more likely it is that at least some 

will have realized correlations that deviate statistically significantly from any target 

correlation.  For example, the Jennrich chi-square test (Jennrich 1970) can be used to 

assess the statistical significance of any realized deviation from a target correlation 

matrix.  

3.  As mentioned above, the proposed Framework indicates that preliminary EPA tests have 

indicated that a Monte Carlo sample size of N = 20,000 “would be appropriate in order 

to optimize the combination of accuracy and run time efficiency.”  As noted above, 

Issue 1 (“Monte Carlo and Sensitivity Analyses”) of the “Draft Peer Review Charge 

Questions” for the Framework (U.S. EPA 2014c) indicates that even smaller simulation 

sizes were used, when it states, “All combinations of scenario variables have been 

modeled and a distribution of results for each scenario was developed by iterating 

10,000 times for exterior scenarios and 3,000 times for interior scenarios from the 

sampled variables.”  The reliability of Monte Carlo results using sample sizes this low is 

dubious and needs to be verified, especially given the very large number of input 
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variables considered.  It is possible that one or more combinations of relatively (but not 

extremely) unlikely values of some (perhaps even a small) subset of input variables may 

produce a very large upward shift in the value of modeled hazard.  It is consequently 

impossible to characterize an upper (e.g., 95
th

 or 99
th

) percentile, or even the mean value, 

of estimated hazard with any guaranteed degree of reliability using Monte Carlo 

methods, unless the number (n) of input variables is small, or the sample size (N) used is 

very large (e.g., N >> 20,000).  This is true regardless of the Monte Carlo sampling 

technique used (e.g., Latin Hypercube vs. uniform sampling).  The relatively large 

number (n) of variables (and corresponding sampling dimensions) involved guarantees 

that the parameter space that must be sampled to achieve reliability of Monte Carlo 

calculations is very large—very likely exceeding sample sizes of 3,000, 10,000, or 

20,000 referred to in the Framework and in its Draft Peer Review Charge Questions.  

This general, well-known problem—commonly referred to as the “curse of 

dimensionality” in statistical and computer-science literature—arises because the 

volume of sample hyperspace grows (hence its sample density shrinks) exponentially as 

a function of the sampling dimension n (Bellman 1961).  Mathematically, this 

dimensionality problem is related to the classic “coupon collector” problem of 

determining occupancy waiting times (Feller 1971; Bogen 2003).  Importantly, this 

Monte Carlo sampling-efficiency problem pertains not only to continuous random 

variables, but also to nearly all other types of random variables, whenever a relatively 

large number of these must be sampled jointly. 

To illustrate the dimensionality problem, suppose each of n input variables is known a 

priori only to be related positively and monotonically to predicted (e.g., mean or upper-

bound) hazard.  Suppose further that relatively high values of a subset of m (i.e., m-tuple 

subset) of these n variables, which all fall within a commonly defined upper P-percentile 

tail of the m corresponding probability distributions used to model variation in the subset 

of m variables, may potentially interact greatly (e.g., highly synergistically) to increase 

the value of corresponding hazard.  Under these assumptions, any reasonably reliable 

assessment of uncertainty in estimated risk must be based on N risk realizations that 

jointly reflect ≥1 sample of each m-tuple combination of upper tail values.  The 

likelihood that such a specific “upper-bound combination” (UBC) occurs clearly 

becomes very small quickly as m increases (e.g., for values of P ≤ 20%).  For m equal to 

just 2 or 3, this small likelihood might possibly be balanced by a large upward shift in 

corresponding predicted hazard.  The key point is that, absent a priori knowledge about 

the true distribution of hazard, there is no way of knowing that such a disproportionately 

increased risk level could be produced by a particular combination of m upper P-

percentile tail values for m corresponding inputs, without actually sampling each 

potentially relevant combination at least once.  For example, with n = 65 (the number of 

Monte Carlo input variables used by the Framework for external scenarios), there are a 

total of 2
65

, or approximately 3.6910
19

 possible unique combinations of upper-vs.-lower 

bound values for all 65 variables.  Only C(n,m) potentially relevant m-tuple UBCs need 

be sampled in order to include each at least once, assuming that the Latin hypercube 

method of random sampling is used, where C(n,m) is the number of unique combinations 

of n different items taken m at a time.  For example, C(65,m) is approximately 6.810
38

, 

8.410
57

, and 7.710
76

 for values of m equal to 2, 3, and 4, respectively.  Note that 
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C(65,4) is ~0.1% of Eddington’s cosmic number, which estimates the total number of 

elementary particles in the universe.  Consequently, for Monte Carlo analysis of all 

exterior scenarios, the requirement of investigating such astronomically large values of 

sample size N can be avoided only if it can be established a priori that substantial 

synergism cannot possibly affect the hazard-response model, as would be true, for 

example, in the case of an entirely linear multivariate model.  Without such an a priori, 

analytical investigation of fundamental departures from linearity associated with the 

entire hazard model, and explicit verification that Monte Carlo analysis is not 

meaningless due to high dimensionality of the problem being addressed, the application 

of Monte Carlo analysis provides only a façade of scientific rigor, without any actual 

substance. 

To add power to addressing the dimensionality issue, an approximating (e.g., even two-

point) probability mass function can be used to replace each continuous-variable input 

distribution, and then discrete probability calculus can be used instead of Monte Carlo 

sampling to obtain a probabilistic characterization of exposure or risk (e.g., Bogen 

1995).  However, even this approach fails when the number (n) of input variables 

becomes even moderately large (e.g., n > 10), unless the sample size N is also very large 

(e.g., N >> 20,000) (Bogen 2003).  A mathematical “stopping rule” was proposed to 

define a value of N that addresses the dimensionality problem with a corresponding, 

specified degree of statistical confidence (Woo 1991).  However, the mathematical proof 

offered for this rule was shown to be defective (Bogen 2003).  Consequently, any 

generic specification of N by the proposed Framework will need to be justified using 

rigorous, peer-reviewed methods. 

4.  How will the output be used to distinguish between acceptable and unacceptable 

conditions?  The specific combination(s) of population mean response and upper-bound 

individual response that would be used to distinguish acceptable from unacceptable 

scenarios are not specified in the proposed Framework.  If the rationale for using any 

other response measure besides population mean response is an equity concern, how will 

the issue be addressed that extremely rare exposure scenarios (associated with very little 

likelihood) may have an unacceptably high level of risk to a 99%ile child at risk, but the 

number of such children expected to be at risk is so low that it is, for example, 99% 

certain that zero actual cases will arise? 

Monte Carlo Case Study 

The Framework provides a case study for which Monte Carlo methods were used to estimate 

blood lead levels in children.  While this was intended as an example, it is unfortunate that EPA 

included this material, because it depicts unrealistic conditions and an approach that is largely 

grounded on judgment.  Appendix C states that: 

The metrics are incremental IQ change, averaged over ages 1 through 7, for a child who 

experiences a renovation at age 1. In other words, the hypothetical child experiences the 

renovation at age 1, which results in a short‐term spike in blood lead. The child's blood 

lead then returns to the pre‐renovation level, typically within 1 year. For this preliminary 
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analysis, the child's AVERAGE blood lead, over ages 1 through 7, is then used to 

approximate the actual long‐term impact on the child's IQ. 

 

This is essentially a “playing with numbers exercise” that does not convey reliable information 

and may be misleading.  Not only is the scenario inappropriate and unrealistic, but it conveys 

information to the public about exposures that may be incorrect given the assumptions that were 

made.  If this is an example of the approach at a preliminary level, it points to a major problem 

with implementing the more complex Framework and with generating results that will be useful.  

Risk Modeling Procedures 

The proposed Framework specifically addresses the “short‐term nature of the exposure resulting 

from renovation activities.”  For non-cancer health endpoints such as IQ-decrement associated 

with low-level lead exposure by the risk model(s) to be used, what is the biological basis for 

predicting that any biologically significant effect may occur from a transient (e.g., less than 2- 

or 4-week) exposure in the absence of any human or experimental-animal data demonstrating 

directly that such effects can possibly occur?  For example, it is not clear that any such data 

were described in EPA’s recent health assessment for lead (U.S. EPA 2013). 

Summary and Implications 

Based on the limited information provided by EPA, it is not possible to provide specific 

feedback regarding the nature or magnitude of likely errors associated with application of the 

models in the context of assessing impacts on blood lead levels from the RR&P 

activities.  However, the technical comments on specific components of the modeling proposed 

in the Framework, provided above, illustrate the myriad challenges that EPA will face in 

implementing the Framework.  In evaluating the application of both the proposed air modeling 

approach and the probabilistic exposure modeling, it is clear that the absence of strong input 

data and cautious application of the modeling methods could result in spurious or biased 

results.  Due to the tendency to make “conservative assumptions” in the face of uncertainty, the 

modeling could then result in suggesting significant risk where none exists.  Or it could well 

become clear that the effort is so fraught with uncertainty as to make it unusable.  These 

considerations reinforce the recommendations provided in the early sections of this document 

that EPA would be well advised to perform a simple “bounding evaluation” or “plausibility 

analysis” to determine whether any more complex or sophisticated evaluation is even 

warranted.  In the Proposed Framework, EPA states that “the impact … to total blood lead and 

bone lead from P&CB renovation scenarios is expected to be quite small.”  Given this 

anticipated outcome, EPA has failed to provide a robust technical basis to justify undertaking a 

highly uncertain and labor-intensive modeling effort in this context. 
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